基于分数的分歧已被广泛用于机器学习和统计应用。尽管他们的经验成功,但在将它们用于多模式分布时仍观察到了失明问题。在这项工作中,我们讨论了失明问题,并提出了一个新的分歧家庭,可以减轻失明问题。在密度估计的背景下,我们说明了我们提出的差异,与传统方法相比,报告的性能提高了。
translated by 谷歌翻译
离散状态空间代表了对统计推断的主要计算挑战,因为归一化常数的计算需要在大型或可能的无限集中进行求和,这可能是不切实际的。本文通过开发适合离散可怜的可能性的新型贝叶斯推理程序来解决这一计算挑战。受到连续数据的最新方法学进步的启发,主要思想是使用离散的Fisher Divergence更新有关模型参数的信念,以代替有问题的棘手的可能性。结果是可以使用标准计算工具(例如Markov Chain Monte Carlo)进行采样的广义后部,从而规避了棘手的归一化常数。分析了广义后验的统计特性,并具有足够的后验一致性和渐近正态性的条件。此外,提出了一种新颖的通用后代校准方法。应用程序在离散空间数据的晶格模型和计数数据的多元模型上介绍,在每种情况下,方法论都以低计算成本促进通用的贝叶斯推断。
translated by 谷歌翻译
Simulator-based models are models for which the likelihood is intractable but simulation of synthetic data is possible. They are often used to describe complex real-world phenomena, and as such can often be misspecified in practice. Unfortunately, existing Bayesian approaches for simulators are known to perform poorly in those cases. In this paper, we propose a novel algorithm based on the posterior bootstrap and maximum mean discrepancy estimators. This leads to a highly-parallelisable Bayesian inference algorithm with strong robustness properties. This is demonstrated through an in-depth theoretical study which includes generalisation bounds and proofs of frequentist consistency and robustness of our posterior. The approach is then assessed on a range of examples including a g-and-k distribution and a toggle-switch model.
translated by 谷歌翻译
概率数值方法(PNMS)通过概率推断解决数值问题。它们已开发用于线性代数,优化,集成和微分方程模拟。PNMS自然地纳入了关于问题的先前信息,并通过有限计算资源以及随机输入来量化不确定性。在本文中,我们提出了probnum:提供最先进的概率数值求解器的Python库。Probnum通过模块化设计以及包装器,可以通过模块化设计来定制PNMS的定制组成,以供自卸使用。在线,在线,文档,开发人员指南和基准,请访问www.probnum.org。
translated by 谷歌翻译
模型拼盘可以为实现概率模型创造重大挑战,这导致了一系列推理方法,直接占此问题。但是,是否需要这些更多涉及的方法将取决于模型是否真正遗漏,并且缺乏普遍适用的方法来回答这个问题。一组可以帮助的工具是健美的测试,在那里我们测试数据集是否可以通过固定分发生成。基于内核的测试已经开发出这个问题,由于它们的灵活性,强烈的理论担保和在各种情况下实现的易于实现,因此这些是流行的。在本文中,我们将这一阶段的工作延伸到更具挑战性的综合性良好问题,在那里,我们就是对某些参数家族中的任何分布感兴趣。这相当于测试是否为数据指定了参数模型。
translated by 谷歌翻译
广义贝叶斯推理使用损失函数而不是可能性的先前信仰更新,因此可以用于赋予鲁棒性,以防止可能的错误规范的可能性。在这里,我们认为广泛化的贝叶斯推论斯坦坦差异作为损失函数的损失,由应用程序的可能性含有难治性归一化常数。在这种情况下,斯坦因差异来避免归一化恒定的评估,并产生封闭形式或使用标准马尔可夫链蒙特卡罗的通用后出版物。在理论层面上,我们显示了一致性,渐近的正常性和偏见 - 稳健性,突出了这些物业如何受到斯坦因差异的选择。然后,我们提供关于一系列棘手分布的数值实验,包括基于内核的指数家庭模型和非高斯图形模型的应用。
translated by 谷歌翻译
贝叶斯神经网络试图将神经网络的强大预测性能与与贝叶斯架构预测产出相关的不确定性的正式量化相结合。然而,它仍然不清楚如何在升入网络的输出空间时,如何赋予网络的参数。提出了一种可能的解决方案,使用户能够为手头的任务提供适当的高斯过程协方差函数。我们的方法构造了网络参数的先前分配,称为ridgelet,它近似于网络的输出空间中的Posited高斯过程。与神经网络和高斯过程之间的连接的现有工作相比,我们的分析是非渐近的,提供有限的样本大小的错误界限。这建立了贝叶斯神经网络可以近似任何高斯过程,其协方差函数是足够规律的任何高斯过程。我们的实验评估仅限于概念验证,在那里我们证明ridgele先前可以在可以提供合适的高斯过程的回归问题之前出现非结构化。
translated by 谷歌翻译
贝叶斯正交(BQ)是一种解决贝叶斯方式中数值集成问题的方法,允许用户量化其对解决方案的不确定性。 BQ的标准方法基于Intains的高斯过程(GP)近似。结果,BQ本质上仅限于可以以有效的方式完成GP近似的情况,因此通常禁止非常高维或非平滑的目标功能。本文提出使用基于贝叶斯添加剂回归树(BART)前锋的新的贝叶斯数值集成算法来解决这个问题,我们调用Bart-Int。 BART Priors易于调整,适合不连续的功能。我们证明它们在顺序设计环境中,它们也会自然地借给自己,并且可以在各种设置中获得显式收敛速率。这种新方法的优点和缺点在包括Genz功能的一组基准测试和贝叶斯调查设计问题上突出显示。
translated by 谷歌翻译
自适应交通 - 信号控制的大多数强化学习方法都需要从头开始培训,或在任何新的交叉点上或对道路网络,交通分布或培训期间经历的行为约束进行任何修改后。考虑到1)训练此类方法所需的大量经验,以及2)必须通过与真实的道路网络用户进行探索方式来收集经验,因此缺乏可转移性限制的实验和适用性。最近的方法使学习政策能够概括为看不见的道路网络拓扑和交通分布,从而部分应对这一挑战。但是,文献保持在循环的学习(十字路口的连通性的演变必须尊重周期)和无环(较少约束)策略之间的分配,而这些可转移的方法1)仅与循环约束兼容,2)不启用启用。协调。我们介绍了一种新的基于模型的方法Mujam,该方法首次启用了显式配位,该方法首次启用了显式协调,还通过允许对控制器的约束进行概括,进一步推动概括。在涉及道路网络和培训期间从未经历过的交通设置的零拍传输设置中,以及在曼哈顿控制3,971个交通信号控制器的更大转移实验中,我们表明,Mujam使用环状和无循环约束,均优于范围 - 特异性基准以及另一种可转移方法。
translated by 谷歌翻译
许多注册方法都存在着早期工作,重点是基于优化的图像对方法。最近的工作着重于深度注册网络,以预测空间转换。在这两种情况下,通常使用的非参数登记模型,该模型估计转换功能而不是低维转换参数,都需要选择合适的正常器(鼓励平滑转换)及其参数。这使得模型难以调整,并将变形限制为所选正规器允许的变形空间。尽管存在不正常转换的光流的深度学习模型,而是完全依赖于数据,这些模型可能不会产生对医学图像注册期望的差异转换。因此,在这项工作中,我们在无监督的图标深度学习登记方法上开发了Gradicon,该方法仅使用逆矛盾进行正则化。但是,与图标相反,我们证明并从经验上验证,使用梯度反矛盾损失不仅显着改善了收敛性,而且还会导致所得转换图的类似隐式正则化。磁共振(MR)膝关节图像和计算机断层扫描(CT)肺图像的合成实验和实验表明Gradicon的表现出色。我们在保留简单的注册公式的同时,实现了最新的(SOTA)精度,这实际上很重要。
translated by 谷歌翻译